Four-dimensional docking: a fast and accurate account of discrete receptor flexibility in ligand docking.
نویسندگان
چکیده
Many available methods aimed at incorporating the receptor flexibility in ligand docking are computationally expensive, require a high level of user intervention, and were tested only on benchmarks of limited size and diversity. Here we describe the four-dimensional (4D) docking approach that allows seamless incorporation of receptor conformational ensembles in a single docking simulation and reduces the sampling time while preserving the accuracy of traditional ensemble docking. The approach was tested on a benchmark of 99 therapeutically relevant proteins and 300 diverse ligands (half of them experimental or marketed drugs). The conformational variability of the binding pockets was represented by the available crystallographic data, with the total of 1113 receptor structures. The 4D docking method reproduced the correct ligand binding geometry in 77.3% of the benchmark cases, matching the success rate of the traditional approach but employed on average only one-fourth of the time during the ligand sampling phase.
منابع مشابه
Molecular docking study of Papaver alkaloids to some alkaloid receptors
Background and objectives: More than 40 different alkaloids have been obtained from opium the most important of which are morphine, codeine, papaverine, noscapine and tabaine. Opioid alkaloids produce analgesia by affecting areas of the brain that have peptides with pharmacological pseudo-opioid properties. These alkaloids show important effects on some intracellular peptides l...
متن کاملEffect of Biomolecular Conformation on Docking Simulation: A Case Study on a Potent HIV-1 Protease Inhibitor
Human immunodeficiency virus infection / acquired immunodeficiency syndrome (HIV/AIDS) is a disease pertained to the human immune system. Given its crucial role in viral replication, HIV-1 protease (HIV-1 PR) is a prime therapeutic target in AIDS therapy. In this regard, the dynamic aspects of ligand-enzyme interactions may indicate an important role of conformational variability in HIV-1 PR in...
متن کاملProtein flexibility in ligand docking and virtual screening to protein kinases.
The main complicating factor in structure-based drug design is receptor rearrangement upon ligand binding (induced fit). It is the induced fit that complicates cross-docking of ligands from different ligand-receptor complexes. Previous studies have shown the necessity to include protein flexibility in ligand docking and virtual screening. Very few docking methods have been developed to predict ...
متن کاملEffect of Biomolecular Conformation on Docking Simulation: A Case Study on a Potent HIV-1 Protease Inhibitor
Human immunodeficiency virus infection / acquired immunodeficiency syndrome (HIV/AIDS) is a disease pertained to the human immune system. Given its crucial role in viral replication, HIV-1 protease (HIV-1 PR) is a prime therapeutic target in AIDS therapy. In this regard, the dynamic aspects of ligand-enzyme interactions may indicate an important role of conformational variability in HIV-1 PR in...
متن کاملRapid Flexible Docking Using a Stochastic Rotamer Library of Ligands
Existing flexible docking approaches model the ligand and receptor flexibility either separately or in a loosely coupled manner, which captures the conformational changes inefficiently. Here, we propose a flexible docking approach, MedusaDock, which models both ligand and receptor flexibility simultaneously with sets of discrete rotamers. We developed an algorithm to build the ligand rotamer li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of medicinal chemistry
دوره 52 2 شماره
صفحات -
تاریخ انتشار 2009